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Abstract—A study is made of free convection in an annular fluid layer confined between two horizontal
cylinders. Results are presented for the case of an adiabatic inner boundary with a sinusoidal temperature
distribution on the outer boundary. The problem is formulated in terms of the Boussinesq approximations
and solved using perturbation and finite-difference techniques. It is found that the results obtained from
both methods are in good mutual agreement for weak convection. The solutions reveal the existence of
various flow regimes, depending on Ra and the angular position of the temperature maximum on the outer
boundary, which are similar in character to earlier results for the porous medium. It is found that incipient
convection may decrease Nu in one case. In particular, when heating is from below, three distinct subregimes
may be obtained within the range of parameters considered (R =2, 0 < Ra < 40,000) namely, the
steady quadri-cellular flow for Ra < 1120, the circulating flow with or without secondary cells for
1120 < Ra < 40,000, and finally unsteady circulating flow for Ra > 40,000. Secondary cells begin to appear
near the outer boundary at Ra = 11,000. For an arbitrary heating angle, there is always a net circulating
flow around the cavity, unless heating is from the top, which leads to an enhancement of heat transfer
with the surroundings. The maximum flow and heat transfer rates are obtained for a heating angle below
the horizontal whose value depends on Ra.

1. INTRODUCTION

NATURAL convection flow within closed loop cavities
is involved in numerous industrial processes as a
means of transporting thermal energy. The appli-
cations range from the cooling of turbine blades to
the maintenance of icefree navigation buoys and are
reviewed in detail by Japikse [1]. The subject, as can
be expected, constitutes an important current research
topic. In particular, much attention has been devoted
lately to the toroidal thermosyphon following the
pioneering work of Welander [2]. This particular
problem has been studied both theoretically and
experimentally under various thermal boundary con-
ditions.

Creveling et al. [3] and subsequently Damerell and
Schoenhals [4] reported unsteadiness and flow rever-
sals in the case of a vertical toroidal loop. In order
to predict these phenomena, theoretical studies were
performed based on a one-dimensional approach to
the system of momentum and energy equations. This
one-dimensional approach applied to an essentially
three-dimensional situation turned out to be
incapable of predicting important features of the flow.
Mertol et al. [5, 6] proposed instead a less restrictive,
two-dimensional axially symmetric model. Still, their
two-dimensional model could not predict the experi-
mentally observed recirculation zones near the sur-
face of the tube.

Singh and Elliot [7] considered the problem of natu-
ral convection between two horizontal concentric cyl-
inders, which, unlike the toroidal problem, may be

described exactly by two-dimensional equations. This
simpler problem is known to exhibit the same kind of
flow behavior (unsteadiness, recirculation zones) as
the toroidal configuration and thus offers an alter-
native way of understanding the features of the latter.
However, the perturbation solution of ref. [7] is
limited to the case of stable vertical stratification with
symmetry with respect to the vertical diameter for
which no net circulating flow exists around the cavity.

The case of two horizontal concentric cylinders
filled with a porous medium and subjected to an arbi-
trarily oriented thermal stratification at the outer
boundary was investigated by Robillard et al. [8, 9].
Their studies showed that the symmetry hypothesis
with respect to the vertical diameter cannot be applied
in general and that one must allow for the possibility
of a net circulating flow around the annular cavity.
They found out that different flow regimes were poss-
ible depending on the Rayleigh number and the orien-
tation of the thermal stratification with respect to
gravity. Namely, there could be steady multicellular
flow, unsteady periodic multicellular flow and finally
unsteady chaotic flow. These authors have also
studied separately the situation where heating is
from below {10}, in which case the circulating flow
in the loop could develop in either direction with equal
probability.

The present study is focused upon the problem of
natural convection in a fluid layer confined between
two horizontal concentric cylinders. It represents the
natural extension of the work of ref. [9] from a porous
medium to a fluid medium. The problem is formulated
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Greek symbols
o diffusivity [m?s~ ']

NOMENCLATURE

C specific heat [J kg=' K] B thermal expansion coefficient [K ™ ']
G Grashof number, SAT'r2 g/v? u dynamic viscosity [kgm~"'s™]
g gravitational acceleration [m s~ 2 v kinematic viscosity [m? s~ ']
k thermal conductivity [Js~'m~'K™"] 0 density [kg m™?]
Nu  overall Nusselt number defined by ¢ angular coordinate

equations (28) and (29) b, heating angle
Nu*  Nusselt number for pure conduction ] dimensionless stream function, ¥’/v
P fluid pressure [N m~?] o’ vorticity [s'].
Pr Prandtl number, v/a
r radial coordinate [m]
R aspect. ratio, r,/r Superscripts
1?” Raylelgh number, G Pr ’ dimensional variable
! time [s] n latest available field value.
T temperature [K]
AT’ half the temperature difference between

the hottest and coldest points on the )

outer boundary Subscripts ) )
u velocity component in the r'-direction ! value on inner cylinder

[ms~'] o value on outer cylinder.
V' velocity [ms™ ']
v velocity component in the ¢’-direction

[ms~']. Other symbols

V- () divergence operator
V() gradient operator
V’3( ) Laplacian operator.

in terms of the usual Boussinesq approximations and
treated by analytical and numerical methods. The set
of governing equations is solved for a zero heat flux
boundary condition on the inner wall and a sinusoidal
temperature distribution on the outer wall. Previous
experience with the porous medium [10] has shown
that adiabatic conditions at the inner wall allow the
existence of a steady flow regime with a net circulation
when the cavity is heated from below, unlike iso-
thermal conditions which always lead to oscillating
flow patterns.

Results are presented which reveal the existence of
various distinct flow regimes and the enhancement of
heat transfer rates by the net circulation which is
established around the annular cavity. The concluding
remarks emphasize the particular aspects which dis-
tinguish the fluid medium case from the porous.

2. MATHEMATICAL MODEL

Figure 1 shows the geometry of the problem. The
annular region between the two concentric cylinders
represents the flow domain of interest for the present
analysis. A zero heat flux (i.e. adiabatic) condition
is imposed on the inner boundary, while a temperature
distribution of the form

T,—T{=AT cos(¢—¢,) M

is prescribed on the outer boundary.

The governing non-dimensional equations for a
single-phase fluid with constant properties which satis-
fies the Boussinesq approximations are, after scaling
time, length, temperature, velocity and pressure with

pirs?u, ro, AT, u/pir, and p?/pir,

V-V=0 )

v G )
E+(V V)V = —ﬁTg—Vp+V A% (3)
o v-wT=Lwvr 4
ot +( T Pr ) @

The corresponding set of dimensionless boundary
conditions is simply

a—T=O, V=0 for
or

r=1 (5a)

T=cos(¢p—¢,), V=0 for r=R

The pressure term can be eliminated in the usual way
by taking the curl of equation (3) which then becomes

(5b)

dw G )
E—F(V Vo = ~F$(T)+V w 6)
where
. .0 cos¢ O
,Z’—smd)a-}—Téa.
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F1G. 1. Flow geometry and coordinate system.

The velocity components and the vorticity may be
expressed in terms of the dimensionless stream func-
tion y as

10y
u= ;5-(5 (73)

oy
--= (7b)
o= —V. (Tc)

In this case equation (2) is identically satisfied, while
equations (4) and (6) become respectively

ap_Prioyor _oyor| o7
ViT=+ [6¢ o a¢]+P' a  ®
and
o [ awaviy  apaviy
V‘/"?[_E a6 T a6 6r:|
G vy

23 €M+ )

It is appropriate to point out that there may be a net
circulating flow around the annulus. Consequently
the value of ¥ may be arbitrarily fixed on only one of
the two boundaries. Assuming that

v=y
Yy =0 for

for r=1 (10a)

r=R (10b)

¥; corresponds then to the net flow rate around the
annular region whose value has yet to be determined.

Two other boundary conditions for y follow at
once from equations (5). The tangential velocity must

vanish at the walls which requires that i must satisfy

oy
=0 for r=1 (11a)
o
E‘—O for r=R. (llb)

A fourth boundary condition for ¥ may be obtained
by taking advantage of the known temperature dis-
tribution at r = R. Integrating equation (3) around
the outer boundary yields the following integral
relation

(12)

r=R

= oy Gn
2 v = — —Si
J; v ar d¢ R3sm¢o.

As long as the flow is steady, one can get another
integral relation for i at r = 1 from the zero heat flux
condition at the inner wall. Taking the gradient of
equation (3) in the radial direction and integrating the
result around the inner boundary using the perio-
dicity of the problem leads to

J‘Zn aZVZ'JI

) Brz

(13)

r=1

3. METHODS OF SOLUTION

Solutions to the governing equations will now be
sought by analytical and numerical methods. Regular
perturbation techniques will be used for weak flows,
that is, when the Rayleigh number is small. Steady-
state low order solutions, valid in the limit as Ra tends
towards zero, will be obtained. The pure conduction
temperature distribution will be taken as the initial
unperturbed state. The analytical approach serves two
purposes. First, it will be used to put forward some
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general tendencies of the flow in the annular layer
under the influence of natural convection. Second, it
will provide an initial test for the numerical approach
which is required at Rayleigh values where the per-
turbation analysis is no longer valid. Numerical sol-
utions will be obtained using finite-difference tech-
niques and allowing for unsteadiness in order to
determine the critical value of Ra above which the
flow becomes time dependent.

3.1. Perturbation solution

The system of equations (8) and (9) together with
boundary conditions (5) for T and equations (10b},
(11) and (12) or (13) for y defines a regular per-
turbation problem. As only steady solutions are
sought, the unsteady terms in equations (8) and (9)
will not be considered any further.

One seeks a power series solution of the form

o

Y(r, ¢) =

n=

T6,9)= ¥, (GIRT,(6)

(GIR* VY (r, ¢) (14a)

(14b)
Substituting equations (14) into equations (8) and

(9) and collecting like powers of G yields a sequence
of linear equations

sl oy, oV, oy, 0V,
4 I LA .4
V"’"ﬂ;r(ar 36 26 or
- —#(T,_), n=12... (15)
Pr & oy, 0T,.; oy, 0T, ,
2 —_— s it e i
VL= L% o o o
n=0,1,... (I5b)

The zero-order solution corresponds to the pure
conduction situation in which case y, = 0 and

Ty = A(r+r ) cos (¢~ ) (16)
where 4 = R/(R?+1). The first-order solution reads

il
Y= A{c; +esInrdeyr? lnr+c4r2—~g4?}smq§°

,2
Z——In r} sin (2¢ —¢,)

+A{c5r“+c6r2+c7+csr" T
(17a)

Pr A 12ty cos (3 —26,)+ () cos (- 2,)

T o=

+fi(r)cos¢}. (17b)

The functions f; in equation (17b) are given explicitly
in the Appendix along with the values of the constants
¢; in equation (17a). The second-order solution is
obtained from the lower order solutions in a straight-
forward manner, However, the calculations involved
become rapidly prohibitive. For this reason, the
second-order solution has been carried out only for
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the stream function. The result for the second-order
stream function i, may be written in this form

AZ
¥z =519:()sin (3¢ —2¢o) +g,(r) sin (24— 24,)

+93(r)sin (2¢) +g4(r)sin 2¢.)].  (18)

Further details are provided in the Appendix.

3.2. Numerical solution

Solutions for the flow field and the temperature
distribution within the doubly-connected region may
be found by standard numerical methods. The govern-
ing equations for the temperature, equation (4), vor-
ticity, equation (6), and stream function, equation
(7c), are first discretized according to the well-known
central difference scheme for a regular mesh size. The
discretized equations for 7, @ and y are then solved
twice at each time step, using the latest available field
values, until convergence to a steady solution is
achieved. Boundary conditions (5a) and (10) are
used for T and ¢, respectively. For the vorticity equa-
tion, one uses the latest values of @ from equation
(7¢) on the boundaries to obtain the new field values.

The discretized Poisson equation for ¢ is solved
explicitly with a successive overrelaxation method
(SOR) whereas the T and w equations are solved
using an alternating direction implicit method (ADI).
Essentially, the ADI method solves for the new field
values of a given variable by assuming explicit dis-
cretization of its governing equation in a single direc-
tion, say r, and explicit discretization otherwise.

The resultant set of finite-difference equations is
tridiagonal in form and therefore both easy and econ-
omical to solve on the computer. The procedure is
then repeated in the ¢-direction, then in the r, and so
on... Thus, the ADI method requires a boundary
condition at the end points in both the r- and ¢-
directions. In the present case, the only physical con-
dition to be used in the ¢-direction is the periodicity.
Referring to ref. [10] for details, solution in the ¢-
direction is obtained from 0 to 4n with the previous
time step values at 27 used as boundary conditions at
the end points. The procedure is repeated once more
before saving the values between n and 37. The results
are independent of the origin for ¢.

When the iy equation is being solved, the value of
¥; is not known explicitly, but only implicitly through
equation (12) or (13). In order to satisfy the latter,
Y7 must be adjusted iteratively as follows. Integrating
r A 8V/3t over the annulus using equation (3) and
periodicity leads, after a few simplifications, to

R "2z 62111 G )
2 [—— —
J; J; r [atar+R3T51n¢]drd¢>

= f [ﬂ %;‘-ﬁ’-]jdqs (19)

which expresses the torque equilibrium with respect
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to the geometric center between the inertial, gravi-
tational and viscous forces. Now, let Ay be a cor-
rection stream function such that ¢ = "+ Ay sat-
isfies equation (19). A simple choice for such a

function would be for instance
Ay = A+ A +AsInr+ A2 Inr 20)

where the A; are determined at once in terms of Ay,
with the help of equations (10) and (11). Substitution
of equation (20) into equation (19) gives

sn(l—R) Ay, [*(” [o%"  GT.
AR R—(—RE_ ), ), "|aear T RESNO

x drd¢— f ” [—’zj;‘/’"]'= dg. (1)

=

For fast convergence to a steady-state solution, one
can use equation (21), with an appropriate relaxation
factor, just once every time step. A similar procedure
based directly on equation (12) instead of equation
(19), although perfectly valid in principle, turned out
to be unsatisfactory in practice. Let us point out that
the correction with equation (21) needs to be applied
only to ¥ and not to the whole " field. Let us mention
also briefly that the adiabatic boundary condition for
the temperature equation is implemented at the inner
wall using image points. The calculations were per-
formed for an 18 by 36 finite-difference grid on an
IBM 4831 computer. The average computing time
required per run was around 5 min of CPU. The
results were stored on disk after each run to be used
as initial conditions for the next calculations. The
accuracy of the numerical technique used in the pre-
sent study has been discussed in detail in ref. [11].

4. RESULTS AND DISCUSSION

4.1. Pseudo-conduction regime

At low Rayleigh numbers, convective heat transfer
is negligible within the annular fluid layer and the
temperature distribution throughout the annulus is
then determined essentially by conduction. This situ-
ation is called the pseudo-conduction regime.

It may now be shown from the perturbation sol-
ution that flow reversals near the boundaries are poss-
ible even in the limit of very small Rayleigh numbers,
provided that ¢, (or 7 — ¢,) is small enough. It is well
known from boundary layer theory that the shear
stress vanishes at the points where the flow will sep-
arate from or reattach to the walls. The angular
locations of these points are thus related to the con-
dition

ov

ar r=1orR

=0. (22)

The latter may be expressed to first order in Ra
from equation (17a). It is then easy to see that for a
given value of R, say R = 2, flow reversals will occur
on the outer boundary if |¢,| or }180°—¢,| < 3.2°
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Similarly, flow reversals will occur on the inner boun-
dary if |¢,| or |180°—¢,| < 4.8°. By comparison
with the porous counterpart of the present problem
[9], there is a wide range of ¢, over which no separa-
tion occurs at low Ra.

Thus for R = 2, there will be two pairs of vortices
imbedded in a circulation flow around the annulus
if |¢,| or |180°—¢,} < 3.2°. For |@,| or |¢,—180°|
between 3.2° and 4.8° there remains only one pair
of recirculation cells adjacent to the inner boundary.
Finally, no separation can occur if {¢,| or |¢,— 180°]
is greater than 4.8° and the streamlines are then con-
centric circles. In this respect, the present problem
admits solutions which are very similar in character
to those which were given earlier by Robillard et al.
[9] for an annular porous layer. The effect of retaining
the second-order terms in equation (22) is to increase
slightly the values of the critical angles given above.
This tendency is moreover confirmed by the numerical
solutions which reveal that the critical heating angle
values will keep on increasing with Rayleigh number.

It should be mentioned that for the cases of heating
from the top or the bottom of the cylinder, i.e. when
o} = 0 or =, there is no net circulation around the
annular and then ¥ =0 on both boundaries. The
streamlines form a four mirror-image cell pattern.
This pattern corresponds to four counterrotating vor-
tices which are symmetric with respect to both hori-
zontal and vertical axes. These symmetry charac-
teristics arise from the fact that governing equations
(8) and (9), together with boundary conditions (5)
and (10) become invariant under the transformations

(r5¢yTa'//_’r’_d)aTs_d/) (23a)
o, T,y —r,n—¢,—T, —y). (23b)

The zero- and first-order perturbation solutions for
temperature T, equation (16), and T, equation (17b),
allow us to examine the effect of incipient convection
on the heat transfer process. As a consequence of the
adiabatic boundary condition for T at r = 1, equation
(5a), the global heat flux across the outer boundary is
obviously zero. Nevertheless, it is possible to intro-
duce an overall Nusselt number of the form

1 moT
Nu = N L o, d¢ (24)
where
2n aTo
Nu* = — d¢ = 4K, 25
0 or |,—r

is the overall Nusselt number for pure conduction,
with K, = (R*—1)/(R*+R). Adding together the
zero- and first-order terms for the temperature gradi-
ent at the outer boundary gives

oT

Ra
Ezchoqu-F

x [Ky(4cos’p—3)+Kslcos¢p  (26)
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at ¢, =0and

oT Ra
= -k, cos¢+F

x [K,(4cos’ ¢ —3)+K;]cosd  (27)

at ¢, = n, where K, and K, stand for (1/2)4%*f(R)
and 0.254°[f5(R)+ f3(R)], respectively. Depending
on the relative magnitudes of K,, K,, K, the higher
order harmonics may be important enough to reverse
the local heat flux more than twice from 0 to 2z.
However, it is easy to show that there will be no
inversion of the heat flux at r = R over the range
—n/2 < ¢ < n/2 provided that Ra is small enough.
Indeed, a closer examination of equations (26) and
(27) reveals that, as long as the condition

Ra < K|

Rl | 28
R STK 431K (%)

is satisfied, equation (26) will be positive and equation
(27) negative for any value of ¢ between —n/2 and
n/2. Assuming that equation (28) holds, it is then a
simple matter to evaluate equation (24) from equa-
tions (25)-(27) using the symmetry of the problem,
which leads to

Nu=1+ %(&—Kz/.’)). 29)
The plus and minus signs in equation (29) correspond
to the cases ¢, =0 and =, respectively. The upper
limit placed upon Ra by equation (28) is equal to
14,488 when R = 2 according to the calculation based
on equations (17). Thus, the condition imposed by
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equation (28) is certainly satisfied over the range of
validity of the second-order perturbation solution,
and therefore equation (29) holds whenever equations
(17) hold.

The consequence of a first-order dependence in Ra
for the Nusselt number is unusual. As implied by
equation (29), the initial effect of convection is to
increase or decrease the value of Nu by the same
amount depending on whether ¢, is zero or n. The
calculations at Ra = 400 based on equations (17b)
and (29) show that Nu = 1.003 for ¢, = = and 0.997
forp,=0at R =2.

Let us consider now the general situation of oblique
heating, i.e. 0 < ¢, < . Depending on the values
assigned to ¢, and Ra, the flow consists (as mentioned
earlier) of either zero, one or two pairs of recirculation
cells imbedded in a mainstream around the cavity. At
low Ra, y; may be obtained readily from equations
(17a) and (18)

242

. G*A
¥; = GA(C+C,—1/64)sin ¢, + T(W,l +7V43

+745+ P46+ 745)510 2¢,).  (30)

The first-order contribution shows that the flow
rate across the annulus varies sinusoidally with the
heating angle, reaching therefore a maximum value
when heating is from the side at ¢, = /2. The second-
order contribution shows that a maximum flow rate
is obtained when the heating angle is greater than n/2.

Figures 2-5 provide a comparison between the per-
turbation and the numerical solutions. Figure 2 shows
the variation of the flow rate with the heating angle

2.5 T T T T T
® NUMERICAL SOLUTION
— —— 1" ORDER
2 ol PERTURBATION SOLUTION N
2" oRDER
PERTURBATION SOLUTION =
—— e S e
7 ~
7 ~ -
1.5} ~ ~N
/ AN
¥ / AN
i / AN
7 AN
1.0} / \\ Ra=400 |
/ AN
[ ]
// = = \\\\ G =160 \\
0.5 / s~ -~ .
/ = -~ \\
/ =F =
Z RS
V/
0.0 ] ] | ] i
0 /6 2m/6 3m/e 4m/6 57/6 b
o}

FiG. 2. Circulating flow around the cavity. Comparison between analytical and numerical results, R = 2,
Pr=1.
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3.0 T T T T T
] NUMERICAL SOLUTION
— —— 13! ORDER
PERTURBATION SOLUTION
2.5 —_— L4 N
- —
P ~
7 ~N
Vs N
Nu / AN
/ AN
/e \
2.0 / AN 7]
/ \ M
/ N\
/ \
/ \\
/ Ra = 400
1.5 \ .
/e . o N\
/s ————— e AN
e - ~ -~ _Ra=160 N
// — -— - \\ -~ °
— S
— \\ \
L olkk=——""" ! ! I | T~
0 /e 2m/6 3m/6 47/6 5m/6 m
o]

Fi1G. 3. Nusselt number. Comparison between analytical and numerical results, R = 2, Pr = 1.

at Ra = 160 and 400 for R = 2 and Pr = 1 together
with the corresponding results calculated from the
numerical solution procedure described in the pre-
vious section. The asymmetry introduced by the
second-order term in equation (29) is obvious. Figure
3 presents the overall Nusselt number profiles for the
same values of Ra, R and Pr. The analytical results
based on the first-order solution for T are symmetric

with respect to ¢, = n/2, while the numerical results
are not.

Figures 4 and 5 show the variation of ¥; and Nu
respectively with Ra and R, for ¢, = n/2. From these
two figures, and also to a certain extent from the
previous two (for R = 2), it can be asserted that the
low order perturbation solution for ¢ and T given
here is accurate up to Ra = 400 or 500 for R = 2, up

10 ] v T — T T T T T LA B B
A © B NUMERICAL SOLUTION
PERTURBATION SOLUTION
8 -
¢o = 7"/2 ]

10

Ra

FiG. 4. Circulating flow at ¢, = n/2 as a function of Ra. Analytical and numerical results, R = 1.3, 1.5, 2,
Pr=1.
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F1G. 5. Nusselt number at ¢, = n/2 as a function of Ra. Analytical and numerical results, R = 1.3, 1.5, 2.

to Ra = 1300 or 1400 for R = 1.5and up to Ra = 5000
or 5500 for R = 1.3.

The computations presented in Figs. 4 and 5 were
repeated for Pr = 0.7 and 7. Asexpected, the influence
of this parameter was almost negligible over the range
of Rayleigh numbers considered. For instance, for
R =2 and Ra= 1600, the numerically computed
value of Pry; changed from 4.592 (Pr = 0.7) to 4.664
(Pr = 7) which is of the order of 1.5%. It is obvious
from equation (30) that Pry; is a function of Ra only,
up to the second order for ¢, = n/2, and that the
perturbation solution remained unaffected.

4.2, Convective regime

As the Rayleigh number is increased, the per-
turbation solutions become inappropriate and the
problem must be investigated numerically. The
numerical solutions reveal the existence of various
flow regimes depending on the value of the Rayleigh
number and the heating angle ¢,,. All the results which
are presented in this subsection were obtained for an
aspect ratio R = 2, assuming a Prandt] number value
Pr=1.

4.2.1. Heating from the top. This case corresponds
to a stable stratification. A steady-state symmetric
non-recirculating flow is observed over the entire
range of Rayleigh numbers considered in this study
(0 < Ra < 40,000). The streamlines invariably form a
quadri-cellular pattern. As the Rayleigh number is
increased however, the isotherms become more and
more horizontal compared to the pseudo-conduction
situation. The overall heat transfer behavior described
by equation (24) remains comparable to that which is
found in the absence of strong convection effects.

4.2.2. Heating from the bottom. This situation cor-
responds to an unstable stratification. Three distinct
subregimes can be obtained in this case depending on
the value of Ra.

For Ra < 1120, the flow is again quadricellular
without recirculation and does not differ significantly
from the stably stratified flow. Above this threshold
value, a net circulation suddenly develops around the
annulus and the symmetry with respect to the X~ and
Y-axes is lost. The flow and temperature fields do
remain centro-symmetric however. In fact, this cir-
culation is a consequence of the potentially unstable
behavior of a fluid layer heated from below just like
in the classical Bénard problem.

Associated with the development of the instabilities
is an abrupt change in the flow rate and heat transfer.
The streamlines are concentric circles in the beginning
of the circulating flow regime and become pro-
gressively oval as Ra increases. When Ra increases
beyond roughly 11,000, secondary cells begin to
appear, near the outer boundary at first, then also
near the inner boundary. Figure 6 shows the evolution
of §; with Ra. Figure 7 describes how the heat transfer
with the surroundings is enhanced by the net cir-
culation (i.e. ;) around the cavity. The ‘leveling-off”
effect which is observed on both Figs. 6 and 7 at
high Rayleigh numbers might be due to a progressive
balance between the mainstream and reverse flows.
Indeed, the flows are initially quite weak in the sec-
ondary cells, but eventually they increase, and become
comparable to the mainstream flow. Finally, beyond
a second critical Rayleigh number, whose value is
slightly above 40,000, no steady-state solution can be
reached. The time-dependence is very weak at first
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F1G. 6. Circulating flow at ¢, = = as a function of Rae, R =2, Pr=1.

and it is not clear whether or not this time dependence
is periodic in character. As the Rayleigh number
increases, the oscillations become faster and their
amplitude grows. A detailed investigation of the
unsteady flow regime was beyond the reach of the
authors’ computer code capability and was conse-
quently omitted.

4.2.3. Arbitrary heating angle. In this case there is
always a net circulation around the annular cavity,

except of course for ¢, = 0 (and =, at low Ra). The
maximum flow and heat transfer rates are obtained
for a heating angle below the horizontal whose value
depends on Ra. The tendencies towards asymmetry
which were revealed by the perturbation analysis are
corroborated by the numerical solutions. Leaving
aside the case ¢, = n, flow reversals can occur in an
ever wider range of heating angles as Ra is increased.
In fact, for Ra = 15,000, weak secondary cells are

T 7

T T 1]

Ra

FiG. 7. Nusselt number at ¢, = = as a function of Ra, R = 2.
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of ¢, Ra = 40,000, R =2, Pr=1.

fields as function

FiG. 8. Flow and temperature



A study of laminar natural convection in a2 non-uniformly heated annular fluid layer

1219

1.5 T T T I T
Lok Ra = 40000 .
L .0
~ .
N LA /Qo
N & y;
0.5 N Y o
\ 2
\ % y
T L
0.0 e
%o
//
\
-05 \‘ / -
A
> O
"/ﬁ-*gfo\‘c’
-1.0 1 I 1 | 1
0 /3 27/3 m 47/3 57/3 2T

(é-4)

F1G. 9. Temperature distribution on the inner wall as a function of ¢, Ra = 40,000, R =2, Pr = 1.

present at the inner boundary even when heating is
from the side at ¢, = n/2. Figure 8 depicts the flow
and temperature fields for Ra = 40,000 at different
heating angles and clearly shows the secondary cells.
The corresponding temperature distributions at the
inner wall may be seen on Fig. 9. The pure conduction

35

temperature distribution, given by the dashed line,
stands for all ¢,. The temperature profiles reveal a
degree of asymmetry with respect to ¢—¢, = n/2
which is directly related to the magnitude of y;, reach-
ing a maximum when ¢, is between 37/4 and .
Figure 10 shows the variation of the flow rate ¥,
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Fi16G. 10. Circulating flow as a function of ¢,, R =2, Pr=1.
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with the heating angle ¢, for different values of Ra.
The asymmetry of the ; profiles with respect to
¢, = 7/2 becomes more and more pronounced as Ra
increases. Figure 11 shows the corresponding Nusselt
number profiles, Nu vs ¢,. It is quite interesting to
notice the shift in the location of the maximum Nu
away from ¢, = n/2 at small Rayleigh numbers (see
Fig. 3) and then backwards towards ¢, = 7/2 at large
Rayleigh numbers. This effect is probably also
explained by the balance mechanism between the main
flow and the recirculating flow near the outer boun-
dary which hinders heat transfer at large values of
¢, and Ra. In particular, the ‘leveling-off’ effect
mentioned earlier for Nu at ¢, = n becomes obvious
on Fig. 11.

5. CONCLUDING REMARKS

Natural convection flow in an annular fluid layer
has been investigated assuming adiabatic conditions
at the inner boundary and a prescribed sinusoidal
temperature at the outer boundary. Two-dimensional
steady-state solutions were obtained with regular per-
turbation and numerical methods.

The perturbation solutions show that the first effect
of incipient convection is to decrease the value of the
overall Nusselt number for ¢, = 0, which is verified
numerically. This phenomenon has been described
previously by Robillard et al. [10] for ¢, = 7 in porous
flow with an isothermal inner boundary. As opposed

to the case of the porous medium [9], there exists for
the fluid medium a wider range of heating angles for
which no separation will occur in the limit of small
Rayleigh numbers.

Just as in the porous case [9], the present study
concludes to the existence of various flow regimes
depending on the values of the Rayleigh number and
the heating angle. However, unlike the porous case,
the heat flow at the outer boundary never changed
sign more than twice on 0 < ¢ < 2n over the whole
range of Rayleigh numbers considered (0 < Ra <
40,000). Furthermore, it was reported in ref. [9]
that for the porous medium the heat flow across the
outer boundary is more and more concentrated at
the top and bottom of the cavity as Ra is increased.
This tendency is still present for the fluid medium, but
it is far less pronounced. Finally, it is mentioned in
ref. [9] that the flow rate ¥; reached a maximum and
then decreased with Ra for ¢, = m. This is in contrast
with the monotonous increase of y; with Ra which is
observed for a fluid.

It might be stated as final remark that the physical
behavior of the fluid medium is not as easily under-
stood as that of the porous medium. In the latter case,
there is a simple relation between the net circulation
around any closed path in the flow and the tem-
perature field which has no counterpart in the case
of a fluid. For instance in ref. [9] the existence of
recirculating cells such as the ones shown on Fig. 8,
¢, = 7, may be deduced a priori from the fact that the
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circulation on the outer boundary takes the value
zero.
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APPENDIX

The coefficients for the first-order stream function y,
equation (17a), are
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_ 6—5R’—R*+4InR(-3+R*+4InR)

' 64(1—R™?)
.- 1—41mrzjre2
16(1—R?)
Cy=—1f8
Co=1/32-Cy2—Cs2
R2+R* —R*4+RS
= R—r T sa—r 5 "R
~1-4R?—R* 1+3R“—4R"
Co= 5303 6(1—R 7 "R
3(1+R™Y) —1+R"¢ R

= na—r ) T RU-R D"
Cy= —Cs—Cy—Cs.

The functions f(r) in the first-order temperature function
T,, equation (17b), are given by the following expressions:

filr) = o P Har it Inr
+0¢15’+<1167_1+a.7r1nr
-1 -1
Jolr) = aayrtaar ™ asr T inrtag,ring
+oysr Inr4ayerin?r+oy,rd +ager®
f3(n) = o r oo oy’ F oy’ +agsring
+oyer N Inr+ag,r 3 daggrinte.,

For the second-order stream function ,, equation (18), the
functions g,(r) are given by

G = 1aryart T Ry 4y oy
+y16rt Yty Inr+y, ot In? r 4y or?
+yr Inr

9200 = y2art +y22r? a3+ 20 T ya sty er
+yaInr+y,ertInr+y,0rt Inr+y, 0t in?r
+y2,72Inr+y,,,r7 In?r

g3(n) = yaart + 32 Fysa s T s 4y et
+ys70nr+ysertInr+y;0rt Inr+y;,0r* In?r
+ysnrilnr+y; o Inr

ga(D) =ya +yaaInr+y, i +y, Inr+y,5r°
+yad S F et Inr+y gt yp,ortiny
+ygr0r 0 r4y,,,r* In?r.

For the sake of brevity, the coefficients a;; and y,, are not
given explicitly here, but are available from the authors upon
request.

ETUDE DE LA CONVECTION LAMINAIRE NATURELLE DANS UNE COUCHE
FLUIDE ANNULAIRE NON UNIFORMEMENT CHAUFFEE

Résumé—On étudie la convection naturelle relative & une couche annulaire confinée entre deux cylindres
horizontaux. Des résultats sont présentés pour le cas d’une frontiére intérieure adiabatique avec une
distribution de température sinusoidale sur la frontiére extérieure. Le probléme est formulé avec ap-
proximation de Boussinesq et il est résolu en utilisant les techniques de perturbation et de différences finies.
On trouve que ces deux méthodes sont en bon accord pour la convection faible. On constate I’existence de
plusieurs régimes d’écoulement qui dépendent de Ra et de la position angulaire du maximum de température
sur la frontiére extérieure, ce qui est semblable & des résultats antérieurs pour le milieu poreux. En particulier
quand on chauffe par le bas, il y a trois sous-régimes distincts dans le domaine de paramétres considéré
(R =2, 0 < Ra < 40000): ’écoulement stable & quatre cellules pour Ra < 1120, I’écoulement recirculant
avec ou sans cellules secondaires pour 1120 < Ra < 40000, et finalement un écoulement recirculant instable
pour Ra > 40000. Des cellules secondaires commencent & apparaitre prés de la limite extérieure a
Ra = 11000. Pour un angle quelconque de chauffage, il y a toujours une recirculation nette autour de la
cavité, a4 moins que le chauffage soit au sommet, qui conduit 4 une augmentation du transfert de chaleur
avec I’environnent. Ce maximum de mouvement et de transfert est obtenu pour un angle de chauffage au-
dessous de I’horizontale mais qui dépend de Ra.
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UNTERSUCHUNG DER LAMINAREN NATURLICHEN KONVEKTION IN EINEM
UNGLEICHMASSIG BEHEIZTEN RINGRAUM

Zusammenfassung—Die freie Konvektion in einem fluidgefiillten Ringraum zwischen zwei konzentrischen
Zylindern wird untersucht. Ergebnisse werden fiir den Fall des adiabaten inneren Zylinders und einer
sinusférmigen Temperaturverteilung auf dem duBeren Zylinder gezeigt. Das Problem wird mit Hilfe der
Boussinesq-Naherung formuliert und mit Hilfe von Differenzenverfahren und Strémungsverfahren geldst.
Beide Verfahren zeigen vor allem bei schwach ausgeprigter Konvektion gute Ubereinstimmung. Die
Losungen zeigen verschiedene Stromungsarten auf, abhidngig von der Rayleigh-Zahl und dem Ort der
hochsten Temperatur auf dem duBeren Zylinder. Sie sind friheren Ergebnissen mit pordser Fiillung
prinzipiell dhnlich. In einem Fall zeigt sich, daB die gerade einsetzende Konvektion die Nusselt-Zahl
verringert. Wenn direkt von unten beheizt wird, erhilt man im Bereich der untersuchten Parameter
(Radienverhdltnis R,/R, = 2, Rayleigh-Zahl 0 < Ra < 40000) drei verschiedene Strémungsarten: sta-
tiondire Rechteckzellen fiir Ra < 1120, Zirkulationsstromung mit und ohne Sekundirzellen fir
1120 < Ra < 40000 und schlieBlich instationdre Zirkulationsstromung fiir Ra > 40000. Sckundiirzellen
entstehen nahe der dueren Zylinderwand ab etwa Ra = 11000. Bei allen anderen Winkelpositionen der
hdchsten Temperatur erhdlt man eine umlaufende Strémung im Ringraum, auBer wenn direkt von oben
geheizt wird. Dies fiihrt zu einem verstirkten Wirmeiibergang an die Umgebung. Die stirkste Stromung
und den besten Wirmeiibergang erhilt man, wenn die Stelle maximaler Temperatur auf der unteren
Zylinderhilfte ist, wobei die genaue Position von der Rayleigh-Zahl abhingt.

UCCJIIENOBAHUE JIAMUHAPHOE ECTECTBEHHON KOHBEKLUH B KOJIBLEBOM
CJIOE XNJKOCTH INMPM HEPABHOMEPHOM HATIPEBE

Ansotams—H3yuasace cBoBoNHAs KOHBEKLMA B KOJBLEBOM CJIOE XHIAKOCTH, HAXOMAILEHCS MeXIy
ABYMS FOPH3OHTaNBHBIME muimMHOpaMu. [IpencrapiieHst pesyasTaThl ang aauabaTuyeckolf BHyTpenHei
rpaHuiibl H CHHYCOMIAMBHOTO pacnpenelicHHs TeMICpaTyphl Ha BHewweR rpaHuue cnos. Mcenoassosa-
soce npubnuxenne Byccrrecka. Peiuenue nOy4eHO METONOM BOIMYLICHHH M YHCICHHBIM METOAOM
KOHEMHBIX pasHocTed. OOHapyXeHo, 4TO pe3yabTaThi, NOAYYEHHBIC 00OUMY METONAMH, XOPOWIO COTIa-
CyloTcsl JUtH cayyas 1aboii konBekunH. PeilleHHs NOKa3bIBAalOT CYLUECTBOBAHHE PA3JIHYHBIX PEXHMOB
TEYEHHH, 3ABHCALLIMX OT 4HCAAa Ra M YIII0BOro MOJI0XKEHHS MaKCHMYMa TeMMEpaTypsl HA HapyXHOH
TPaHALE, KOTOPBIE CXOOHBI 110 XapaKTepy C MOJIy4eHHBIMH PaHEe Pe3yJbTaTaMu I NOPHCTOR Cpelsl.
Haiineno, 970 B Ha4a:1bHBIA NEPHOI BO3HUKAIOILAS KOHBEKLIAA MOXKET HIPUBOANTD K YMEHBIUCHHIO YUCIA
Hyccenpra. B yactHoCTH, NIpH Harpese CHM3Y MOTYT ObITh NOMYYECHBI TPHM OTYETAMBHIX MOAPEKHMA B
ofnactu paccmaTpuBaeMeix napamerpos (R = 2, 0 < Ra < 40000), a KMeHHO: CTALHOHAPHOE TEYEHHE C
4eThIpbMA Auelikamu L8 Ra < 1120, uupKyIALHOHHOE TeYeHHE CO BTODHYHBIMH syelikamu ¥ 6e3 HMX
ana 1120 < Ra < 40000, v naxoHen, HeyCTOHYHMBOE UMPKYJRIHOHHOE TeveHHe 111a Ra > 40 000. Bropuu-
HBIE sHefku nosBasioTcs BO.M3H HapykHOH rpanuubl npu Ra = 11000. ITpu nponssonsHoM mosioxe-
HHH MAKCHMyMa TEMNEPATyphl BCEraa CyIUECTBYET YHCTO LMPKYISUMOHHOE TeUeHHe B NOJIOCTH A0 Tex
TIOp, MOKa He HAYMHAET TPETLCH BEPX, 4TO NPUBOJMT K YCHIIEHHIO TensoobMena. MakcuMyMbl CKOpOCTH
TeyeHUs U koadduuueHTa Ten:1000MeHa 3aBHCAT OT uucaa Ra ¥ Habmoaamuch TPy NOJOKEHHH MaKCH-
MyMa TEMTICPATYPhl HAXKE OCH.



