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Abstract-A study is made of free convection in an annular fluid layer confined between two horizontal 
cylinders. Results are presented for the case of an adiabatic inner boundary with a sinusoidal temperature 
distribution on the outer boundary. The problem is formulated in terms of the Boussinesq approximations 
and solved using perturbation and finite-difference techniques. It is found that the results obtained from 
both methods are in good mutual agreement for weak convection. The solutions reveal the existence of 
various flow regimes, depending on Rn and the angular position of the temperature maximum on the outer 
boundary, which are similar in character to earlier results for the porous medium. It is found that incipient 
convection may decrease Nu in one case. In particular, when heating is from below, three distinct subregimes 
may be obtained within the range of parameters considered (R = 2, 0 < Ra < 40,000) namely, the 
steady quadri-cellular flow for Ra < 1120, the circulating flow with or without secondary cells for 
1120 < Rn < 40,000, and finally unsteady circulating flow for Ra > 40,000. Secondary cells begin to appear 
near the outer boundary at Ra = 11,000. For an arbitrary heating angle, there is always a net circulating 
flow around the cavity, unless heating is from the top, which leads to an enhancement of heat transfer 
with the surroundings. The maximum flow and heat transfer rates are obtained for a heating angle below 

the horizontal whose value depends on Ra. 

1. INTRODUCTION 

NATURAL convection flow within closed loop cavities 
is involved in numerous industrial processes as a 
means of transporting thermal energy. The appli- 
cations range from the cooling of turbine blades to 
the maintenance of icefree navigation buoys and are 
reviewed in detail by Japikse [l]. The subject, as can 
be expected, constitutes an important current research 
topic. In particular, much attention has been devoted 
lately to the toroidal thermosyphon following the 
pioneering work of Welander [2]. This particular 
problem has been studied both theoretically and 
experimentally under various thermal boundary con- 
ditions. 

Creveling et al. [3] and subsequently Damerell and 
Schoenhals [4] reported unsteadiness and flow rever- 
sals in the case of a vertical toroidal loop. In order 
to predict these phenomena, theoretical studies were 
performed based on a one-dimensional approach to 
the system of momentum and energy equations. This 
one-dimensional approach applied to an essentially 
three-dimensional situation turned out to be 
incapable of predicting important features of the flow. 
Mertol et al. [5, 61 proposed instead a less restrictive, 
two-dimensional axially symmetric model. Still, their 
two-dimensional model could not predict the experi- 
mentally observed recirculation zones near the sur- 
face of the tube. 

Singh and Elliot [7] considered the problem of natu- 
ral convection between two horizontal concentric cyl- 
inders, which, unlike the toroidal problem, may be 

described exactly by two-dimensional equations. This 
simpler problem is known to exhibit the same kind of 
flow behavior (unsteadiness, recirculation zones) as 

the toroidal configuration and thus offers an alter- 
native way of understanding the features of the latter. 
However, the perturbation solution of ref. [7] is 
limited to the case of stable vertical stratification with 
symmetry with respect to the vertical diameter for 
which no net circulating flow exists around the cavity. 

The case of two horizontal concentric cylinders 
filled with a porous medium and subjected to an arbi- 
trarily oriented thermal stratification at the outer 
boundary was investigated by Robillard et al. [S, 91. 
Their studies showed that the symmetry hypothesis 
with respect to the vertical diameter cannot be applied 
in general and that one must allow for the possibility 
of a net circulating flow around the annular cavity. 
They found out that different flow regimes were poss- 
ible depending on the Rayleigh number and the orien- 
tation of the thermal stratification with respect to 
gravity. Namely, there could be steady multicellular 
flow, unsteady periodic multicellular flow and finally 
unsteady chaotic flow. These authors have also 
studied separately the situation where heating is 
from below [lo], in which case the circulating flow 
in the loop could develop in either direction with equal 
probability. 

The present study is focused upon the problem of 
natural convection in a fluid layer confined between 
two horizontal concentric cylinders. It represents the 
natural extension of the work of ref. [9] from a porous 
medium to a fluid medium. The problem is formulated 
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NOMENCLATURE 

c specific heat [J kg- ’ Km ‘1 B thermal expansion coefficient [K-‘1 
G Grashof number, BAT’ri g/v2 p dynamic viscosity [kg m- ’ se ‘1 
9 gravitational acceleration [m s- ‘1 V kinematic viscosity [m’ s- ‘1 
k thermal conductivity [J s- ’ mm ’ Km ‘1 P’ density [kg m- ‘1 
NU overall Nusselt number defined by angular coordinate 

equations (28) and (29) $0 heating angle 
NM* Nusselt number for pure conduction * dimensionless stream function, t+Y/v 
P fluid pressure [N m- ‘1 w ’ vorticity [s ‘1. 
Pr Prandtl number, v/et 
r’ radial coordinate [m] 
R aspect ratio, rh/rl 
Ra Rayleigh number, G Pr 

Superscripts 
I dimensional variable 

t’ time [s] n latest available field value. 
T temperature [K] 
AT’ half the temperature difference between 

the hottest and coldest points on the 
outer boundary Subscripts 

UI velocity component in the r/-direction i value on inner cylinder 

[m ss’] 0 value on outer cylinder. 

V’ velocity [m s-- ‘1 

V’ velocity component in the 4’-direction 

[m s- ‘I. Other symbols 
V’ - ( ) divergence operator 

Greek symbols V’( ) gradient operator 

a diffusivity [m’s ‘1 V”( ) Laplacian operator. 

in terms of the usual Boussinesq approximations and 
treated by analytical and numerical methods. The set 
of governing equations is solved for a zero heat flux 
boundary condition on the inner wall and a sinusoidal 
temperature distribution on the outer wall. Previous 
experience with the porous medium [lo] has shown 
that adiabatic conditions at the inner wall allow the 
existence of a steady flow regime with a net circulation 
when the cavity is heated from below, unlike iso- 
thermal conditions which always lead to oscillating 
flow patterns. 

Results are presented which reveal the existence of 

various distinct flow regimes and the enhancement of 
heat transfer rates by the net circulation which is 
established around the annular cavity. The concluding 
remarks emphasize the particular aspects which dis- 
tinguish the fluid medium case from the porous. 

The governing non-dimensional equations for a 
single-phase fluid with constant properties which satis- 
fies the Boussinesq approximations are, after scaling 
time, length, temperature, velocity and pressure with 
plrh*/p, rb, AT', p/p:& and p*/p$$ 

v-v=0 (2) 

av 
at+(V.V)V= -&Tg-Vp+V2V (3) 

aT 
z+(V.V)T=;V2r. 

The corresponding set of dimensionless boundary 
conditions is simply 

aT 
Z=O, V=O for r=l (54 

2. MATHEMATICAL MODEL 
T=cos(~-&,), V= 0 for r= R. (Sb) 

Figure 1 shows the geometry of the problem. The 
The pressure term can be eliminated in the usual way 

annular region between the two concentric cylinders 
by taking the curl of equation (3) which then becomes 

represents the flow domain of interest for the present 
analysis. A zero heat flux (i.e. adiabatic) condition $ +(V*V)o = - +(T)+V%e (6) 

is imposed on the inner boundary, while a temperature 
distribution of the form where 

l--T:= AT'cos(#-4,) (1) a COST a 

is prescribed on the outer boundary. 
_Y=sin~~+~- 

r a4' 
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i T'i + ~T'COS ( $ - +, ) 

FIG. 1. Flow geometry and coordinate system. 

The velocity components and the vorticity may be vanish at the walls which requires that $ must satisfy 

expressed in terms of the dimensionless stream func- 
tion $ as %=O for r=l 

& (1 la) 

1 a* 
“=JG (74 

%=O for r = R. 
i3r 

a+ 
u= -- 

& V) A fourth boundary condition for $ may be obtained 
by taking advantage of the known temperature dis- 

w = -v=*. (7c) 
tribution at r = R. Integrating equation (3) around 
the outer boundary yields the following integral 

In this case equation (2) is identically satisfied, while relation 
equations (4) and (6) become respectively 

69 

= d$ = -$sin&. (12) 
I R 

As long as the flow is steady, one can get another 

and 

a*av** a*av=$ ~ 
+i@ ar 1 

integral relation for $ at r = 1 from the zero heat flux 
condition at the inner wall. Taking the gradient of 
equation (3) in the radial direction and integrating the 
result around the inner boundary using the perio- 
dicity of the problem leads to 

2~ a2v2+ s I a? ,=, d4 = 0. (13) 
0 

It is appropriate to point out that there may be a net 
circulating flow around the annulus. Consequently 
the value of $ may be arbitrarily fixed on only one of 3. METHODS OF SOLUTION 

the two boundaries. Assuming that Solutions to the governing equations will now be 

$ = & for r = 1 
(loa) 

sought by analytical and numerical methods. Regular 
perturbation techniques will be used for weak flows, 

*=O for r=R (lob) 
that is, when the Rayleigh number is small. Steady- 
state low order solutions, valid in the limit as Ra tends 

tii corresponds then to the net flow rate around the towards zero, will be obtained. The pure conduction 
annular region whose value has yet to be determined. temperature distribution will be taken as the initial 

Two other boundary conditions for + follow at unperturbed state. The analytical approach serves two 
once from equations (5). The tangential velocity must purposes. First, it will be used to put forward some 
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general tendencies of the flow in the annular layer 
under the influence of natural convection. Second, it 
will provide an initial test for the numerical approach 
which is required at Rayleigh values where the per- 
turbation analysis is no longer valid. Numerical sol- 
utions will be obtained using finite-di~eren~ tech- 
niques and allowing for unsteadiness in order to 
determine the critical value of Ra above which the 
flow becomes time dependent. 

3.1. Perturbation solution 
The system of equations (8) and (9) together with 

boundary conditions (5) for T and equations (lob), 
(11) and (12) or (13) for II, defines a regular per- 
turbation problem. As only steady solutions are 
sought, the unsteady terms in equations (8) and (9) 
wili not be considered any further. 

One seeks a power series solution of the form 

tf/(r, 4) = 5 (G/R 3)“W, 4) (14a) 
n=O 

W, Cp) = f (G/R 3)n T’“n(y, Cp). 
n=O 

(14b) 

Substituting equations (14) into equations (8) and 
(9) and collecting like powers of G yields a sequence 
of linear equations 

n i 
V%+ c - ( al(/iav2$,z-i atii av2*n-i 

i,OY 
a;-T-sar ! 

= --Y(T,_,), n = 1,2 ,... (15a) 

n=O,l,... (15b) 

The zero-order solution corresponds to the pure 
conduction situation in which case $,, = 0 and 

TO = A(r+r-‘)cos (gS--&) (16) 

where A = R/(R’+ 1). The first-order solution reads 

+A c,r4+c6r2+c7+cgr-2 
i 

- f%lnr 
1 

sin(2+&) 

(17a) 

Tl = ~[Zfi(r)cos(39-2dlo)+f;(r)cos(#-2dlo) 

-t-f3 (4 ~0s 41. (17b) 

The functions J; in equation (17b) are given explicitly 
in the Appendix along with the values of the constants 
c, in equation (17a). The second-order solution is 
obtained from the lower order solutions in a straight- 
forward manner. However, the calculations involved 
become rapidly prohibitive. For this reason, the 
second-order solution has been carried out only for 

the stream function. The result for the second-order 
stream function 1/12 may be written in this form 

J/2 = ~[yi(r)sin(49-29,)+y,(r)sin(20-2~~) 

+g~(r)sin(2#)+9~(r)sint2~~)1. (18) 

Further details are provided in the Appendix. 

3.2. Numerical solution 
Solutions for the flow field and the temperature 

distribution within the doubly-connoted region may 
be found by standard numerical methods. The govern- 
ing equations for the temperature, equation (4), vor- 
ticity, equation (6), and stream function, equation 
(7c), are first discretized according to the well-known 
central difference scheme for a regular mesh size. The 
discretized equations for T, m and 41, are then solved 
twice at each time step, using the latest available field 
values, until convergence to a steady solution is 
achieved. Boundary conditions (Sa) and (10) are 
used for T and $, respectively. For the vorticity equa- 
tion, one uses the latest values of w from equation 
(7~) on the boundaries to obtain the new field values. 

The discretized Poisson equation for If, is solved 
explicitly with a successive overrelaxation method 
(SOR) whereas the T and w equations are solved 
using an alternating direction implicit method (ADI). 
Essentially, the AD1 method solves for the new field 
values of a given variable by assuming explicit dis- 
cretization of its governing equation in a single direc- 
tion, say r, and explicit discretization otherwise. 

The resultant set of finite-difference equations is 
tridiagonal in form and therefore both easy and econ- 
omical to solve on the computer. The procedure is 
then repeated in the #-direction, then in the r, and so 
on.. . Thus, the AD1 method requires a boundary 
condition at the end points in both the r- and r#- 
directions. In the present case, the only physical con- 
dition to be used in the &direction is the periodicity. 
Referring to ref. [lo] for details, solution in the & 
direction is obtained from 0 to 4n with the previous 
time step values at 211 used as boundary conditions at 
the end points. The procedure is repeated once more 
before saving the values between n and 37~. The results 
are independent of the origin for 4. 

When the $ equation is being solved, the value of 
ei is not known explicitly, but only implicitly through 
equation (12) or (13). In order to satisfy the latter, 
jl: must be adjusted iteratively as follows. Integrating 
r A aV/at over the annulus using equation (3) and 
periodicity leads, after a few simplifications, to 

1 drdd, 

= r ~r2~]:::d) (19) 

which expresses the torque equilibrium with respect 



A study of laminar natural convection in a non-uniformly heated annular fluid layer 1213 

to the geometric center between the inertial, gravi- Similarly, flow reversals will occur on the inner boun- 
tational and viscous forces. Now, let A$ be a cor- dary if ]&,] or 1180” -&,I < 4.8”. By comparison 
rection stream function such that $ = $“+A$ sat- with the porous counterpart of the present problem 
isfies equation (19). A simple choice for such a [9], there is a wide range of & over which no separa- 
function would be for instance tion occurs at low Ra. 

A$ = A,+Azr2+A,lnr-+A,r21nr (20) 

where the Aj are determined at once in terms of A$, 
with the help of equations (10) and (11). Substitution 
of equation (20) into equation (19) gives 

Thus for R = 2, there will be two pairs of vortices 
imbedded in a circulation flow around the annulus 
if ]&I or ]180”-&I < 3.2”. For ]&,] or I+,,-180”] 
between 3.2” and 4.8” there remains only one pair 
of recirculation cells adjacent to the inner boundary. 
Finally, no separation can occur if I&] or I$,-- 180”] 
is greater than 4.8” and the streamlines are then con- 
centric circles. In this respect, the present problem 
admits solutions which are very similar in character 
to those which were given earlier by Robillard et al. 
[9] for an annular porous layer. The effect of retaining 
the second-order terms in equation (22) is to increase 
slightly the values of the critical angles given above. 
This tendency is moreover confirmed by the numerical 
solutions which reveal that the critical heating angle 
values will keep on increasing with Rayleigh number. 

4R21n2 R-(1-R2)2 = 

For fast convergence to a steady-state solution, one 
can use equation (21), with an appropriate relaxation 
factor, just once every time step. A similar procedure 
based directly on equation (12) instead of equation 
(19), although perfectly valid in principle, turned out 
to be unsatisfactory in practice. Let us point out that 
the correction with equation (21) needs to be applied 
only to I&” and not to the whole 1(1” field. Let us mention 
also briefly that the adiabatic boundary condition for 
the temperature equation is implemented at the inner 
wall using image points. The calculations were per- 
formed for an 18 by 36 finite-difference grid on an 
IBM 4831 computer. The average computing time 
required per run was around 5 min of CPU. The 
results were stored on disk after each run to be used 
as initial conditions for the next calculations. The 
accuracy of the numerical technique used in the pre- 
sent study has been discussed in detail in ref. [1 11. 

4. RESULTS AND DISCUSSION 

4.1. Pseudo-conduction regime 
At low Rayleigh numbers, convective heat transfer 

is negligible within the annular fluid layer and the 
temperature distribution throughout the annulus is 
then determined essentially by conduction. This situ- 
ation is called the pseudo-conduction regime. 

It may now be shown from the perturbation sol- 
ution that flow reversals near the boundaries are poss- 
ible even in the limit of very small Rayleigh numbers, 
provided that 4, (or n - &) is small enough. It is well 
known from boundary layer theory that the shear 
stress vanishes at the points where the flow will sep- 
arate from or reattach to the walls. The angular 
locations of these points are thus related to the con- 
dition 

au 
ar r=,orR = O. (22) 

The latter may be expressed to first order in Ra 
from equation (17a). It is then easy to see that for a 
given value of R, say R = 2, flow reversals will occur 
on the outer boundary if l&l or 1180”-&] < 3.2”. 

It should be mentioned that for the cases of heating 
from the top or the bottom of the cylinder, i.e. when 
l&l = 0 or T[, there is no net circulation around the 
annular and then $ = 0 on both boundaries. The 
streamlines form a four mirror-image cell pattern. 
This pattern corresponds to four counterrotating vor- 
tices which are symmetric with respect to both hori- 
zontal and vertical axes. These symmetry charac- 
teristics arise from the fact that governing equations 
(8) and (9), together with boundary conditions (5) 
and (10) become invariant under the transformations 

(r,&T,IC/+r,-e&T,-$) (23a) 

(r,4,T,++r,n-& -T, -$). (23b) 

The zero- and first-order perturbation solutions for 
temperature T,,, equation (16), and T,, equation (17b), 
allow us to examine the effect of incipient convection 
on the heat transfer process. As a consequence of the 
adiabatic boundary condition for Tat r = 1, equation 
(5a), the global heat flux across the outer boundary is 
obviously zero. Nevertheless, it is possible to intro- 
duce an overall Nusselt number of the form 

2n dT Ah=& - si I o ar r_Rd’ (24) 

where 

(25) 

is the overall Nusselt number for pure conduction, 
with K, = (R2- 1)/(R3+R). Adding together the 
zero- and first-order terms for the temperature gradi- 
ent at the outer boundary gives 

aT 
-= K,cos~+$ 
ar 

x [K,(4 cos2 C$ - 3) + K,] cos qb (26) 
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at & = 0 and 

aT 
-= -K,cos~+$ ar 

x [K,(4cos* 4 -3)+K,] cos 4 (27) 

at &, = a, where K, and K, stand for (1/2)A*f’,(R) 
and 0.254 ‘If;(R) +f;(R)], respectively. Depending 
on the relative magnitudes of K,, K,, K, the higher 
order harmonics may be important enough to reverse 
the local heat flux more than twice from 0 to 2~. 
However, it is easy to show that there will be no 
inversion of the heat flux at r = R over the range 
-x/2 < I$ < 7112 provided that Ra is small enough. 
Indeed, a closer examination of equations (26) and 
(27) reveals that, as long as the condition 

(28) 

is satisfied, equation (26) will be positive and equation 
(27) negative for any value of 4 between -n/2 and 
71/2. Assuming that equation (28) holds, it is then a 
simple matter to evaluate equation (24) from equa- 
tions (25)-(27) using the symmetry of the problem, 
which leads to 

Ivu=1+ - $$(K,-K,lJ). 
1 

The plus and minus signs in equation (29) correspond 
to the cases & = 0 and n, respectively. The upper 
limit placed upon Ra by equation (28) is equal to 
14,488 when R = 2 according to the calculation based 
on equations (17). Thus, the condition imposed by 

2.5 

0.a 
0 

equation (28) is certainly satisfied over the range of 
validity of the second-order perturbation solution, 
and therefore equation (29) holds whenever equations 
(17) hold. 

The consequence of a first-order dependence in Ra 
for the Nusselt number is unusual. As implied by 
equation (29) the initial effect of convection is to 
increase or decrease the value of Nu by the same 
amount depending on whether e& is zero or n. The 
calculations at Ra = 400 based on equations (17b) 
and (29) show that Nu = 1.003 for 4, = 7c and 0.997 
for 4, = 0 at R = 2. 

Let us consider now the general situation of oblique 
heating, i.e. 0 < & < n. Depending on the values 
assigned to & and Ra, the flow consists (as mentioned 
earlier) of either zero, one or two pairs of recirculation 
cells imbedded in a mainstream around the cavity. At 
low Ra, $, may be obtained readily from equations 
(17a) and (18) 

G*A* 
$i = GA(C,+C,-1/64)sin4,+P 2 (Y4,1 fY4.3 

+~~,~+~~,~+~.+,~)sin (24,). (30) 

The first-order contribution shows that the flow 
rate across the annulus varies sinusoidally with the 
heating angle, reaching therefore a maximum value 
when heating is from the side at &, = x/2. The second- 
order contribution shows that a maximum flow rate 
is obtained when the heating angle is greater than 7t/2. 

Figures 2-5 provide a comparison between the per- 
turbation and the numerical solutions. Figure 2 shows 
the variation of the flow rate with the heating angle 

r/6 27/b 3 T/6 47T/6 57T/6 lr 

FIG. 2. Circulating flow around the cavity. Comparison between analytical and numerical results, R = 2, 
Pr=l. 
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I. 0 
0 2 7r/6 37T/6 47r/6 5 7/S -rl 

+0 

FIG. 3. Nusselt number. Comparison between analytical and numerical results, R = 2, Pr = 1. 

at Ra = 160 and 400 for R = 2 and Pr = 1 together 
with the corresponding results calculated from the 
numerical solution procedure described in the pre- 
vious section. The asymmetry introduced by the 
second-order term in equation (29) is obvious. Figure 
3 presents the overall Nusselt number profiles for the 
same values of Ra, R and Pr. The analytical results 
based on the first-order solution for Tare symmetric 

IO 

6 

+i 

4 

with respect to 4, = n/2, while the numerical results 
are not. 

Figures 4 and 5 show the variation of t,ki and Nu 
respectively with Ra and R, for 4, = ~12. From these 
two figures, and also to a certain extent from the 
previous two (for R = 2), it can be asserted that the 
low order perturbation solution for J/ and T given 
here is accurate up to Ra = 400 or 500 for R = 2, up 

FIG. 4. Circulating flow at 4, = n/2 as a function of Ru. Analytical and numerical results, R = 1.3, 1.5, 2, 
Pr= 1. 
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6 

Nu 

4 

2 

I 

0 L 
IO- IO- 

Ra 

L 

IO4 

FIG. 5. Nusselt number at 4, = 742 as a function of Ra. Analytical and numerical results, R = 1.3, 1.5, 2 

toRa= 1300or1400forR= 15anduptoRa=5000 
or 5500 for R = 1.3. 

The computations presented in Figs. 4 and 5 were 
repeated for Pr = 0.7 and I. As expected, the influence 
of this parameter was almost negligible over the range 
of Rayleigh numbers considered. For instance, for 
R = 2 and Ra = 1600, the numerically computed 
value of Pr pi changed from 4.592 (Pr = 0.7) to 4.664 
(Pr = 7) which is of the order of 1.5%. It is obvious 
from equation (30) that Pr tii is a function of Ra only, 
up to the second order for (p,, = n/2, and that the 
perturbation solution remained unaffected. 

4.2. Convective regime 
As the Rayleigh number is increased, the per- 

turbation solutions become inappropriate and the 
problem must be investigated numerically. The 
numerical solutions reveal the existence of various 
flow regimes depending on the value of the Rayleigh 
number and the heating angle Cp,, All the results which 
are presented in this subsection were obtained for an 
aspect ratio R = 2, assuming a Prandtl number value 
Pr= 1. 

4.2.1. ~eating~um the top. This case corresponds 
to a stable stratification. A steady-state symmetric 
non-recirculating flow is observed over the entire 
range of Rayleigh numbers considered in this study 
(0 < Ra < 40,000). The streamlines invariably form a 
quadri-cellular pattern. As the Rayleigh number is 
increased however, the isotherms become more and 
more horizontal compared to the pseudo-conduction 
situation. The overall heat transfer behavior described 
by equation (24) remains comparable to that which is 
found in the absence of strong convection effects. 

4.2.2. Heating from the bottom. This situation cor- 
responds to an unstable stratification, Three distinct 
subregimes can be obtained in this case depending on 
the value of Ra. 

For Ra < 1120, the Row is again quad~ceilular 
without recirculation and does not differ significantly 
from the stably stratified flow. Above this threshold 
value, a net circulation suddenly develops around the 
annulus and the symmetry with respect to the X- and 
Y-axes is lost. The flow and temperature fields do 
remain intro-symmet~c however. In fact, this cir- 
culation is a consequence of the potentially unstable 
behavior of a fluid layer heated from below just like 
in the classical BCnard problem. 

Associated with the development of the instabilities 
is an abrupt change in the flow rate and heat transfer. 
The streamlines are concentric circles in the beginning 
of the circulating fIow regime and become pro- 
gressively oval as Ra increases. When Ra increases 
beyond roughly 11,000, secondary cells begin to 
appear, near the outer boundary at first, then also 
near the inner boundary. Figure 6 shows the evolution 
of I,!+ with Ra. Figure 7 describes how the heat transfer 
with the surroundings is enhanced by the net cir- 
culation (i.e. +$) around the cavity. The ‘leveling-off 
effect which is observed on both Figs. 6 and 7 at 
high Rayleigh numbers might be due to a progressive 
balance between the mainstream and reverse flows. 
Indeed, the flows are initially quite weak in the sec- 
ondary cells, but eventually they increase, and become 
comparable to the mainstream flow. Finally, beyond 
a second critical Rayleigh number, whose value is 
slightly above 40,000, no steady-state solution can be 
reached. The time-dependence is very weak at first 
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I I I, 1 , ,lll, II”’ 

“,;“,:hz- I 
CIRCULATING FLOW REGIME UNSTEADY 

I 

FLOW REGIME 

Ra 

FIG. 6. Circulating flow at +0 = ?I as a function of Ra, R = 2, Pr = 1. 

and it is not clear whether or not this time dependence 
is periodic in character. As the Rayleigh number 
increases, the oscillations become faster and their 
amplitude grows. A detailed investigation of the 
unsteady flow regime was beyond the reach of the 
authors’ computer code capability and was conse- 
quently omitted. 

4.2.3. Arbitrary heating angle. In this case there is 
always a net circulation around the annular cavity, 

NI 

IC 

a 

E 

d 

4 

2 

C 

except of course for 4, = 0 (and K, at low Ra). The 
maximum flow and heat transfer rates are obtained 
for a heating angle below the horizontal whose value 
depends on Ra. The tendencies towards asymmetry 
which were revealed by the perturbation analysis are 
corroborated by the numerical solutions. Leaving 
aside the case 4, = H, flow reversals can occur in an 
ever wider range of heating angles as Ra is increased. 
In fact, for Ra = 15,000, weak secondary cells are 

l- 

Ra 

FIG. 7. Nusselt number at 4, = II as a function of Ra, R = 2. 
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FIG. 8. Flow and temperature fields as function of c#J,, Ra = 40,000, R = 2, Pr = 1. 
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0 7r 4 r/3 

FIG. 9. Temperature distribution on the inner wall as a function of d,, Ra = 40,000, R = 2, Pr = 1. 

present at the inner boundary even when heating is temperature distribution, given by the dashed line, 

from the side at 4,, = 7r/2. Figure 8 depicts the flow stands for all q&,. The temperature profiles reveal a 

and temperature fields for Ra = 40,000 at different degree of asymmetry with respect to 4 -& = x/2 

heating angles and clearly shows the secondary cells. which is directly related to the magnitude of Ii/i, reach- 

The corresponding temperature distributions at the ing a maximum when do is between 3x/4 and s. 

inner wall may be seen on Fig. 9. The pure conduction Figure 10 shows the variation of the flow rate tii 

I54 
30 - 

25 - 

20 - 

‘i 

15 - 

Ra = 4000 

Ra = 1600 

2lT/6 37,‘6 

+J 

47T/6 57r/6 lr 

FIG. 10. Circulating flow as a function of &, R = 2, Pr = 1. 
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Ra = 4000 

0 r/6 2‘rr/6 37/6 47r/6 57/6 lr 

FIG. 11. Nusselt number as a function of +0, R = 2. 

with the heating angle 4, for different values of Ra. 

The asymmetry of the $I profiles with respect to 
&, = 742 becomes more and more pronounced as Ra 

increases. Figure 11 shows the corresponding Nusselt 
number profiles, Nu vs &. It is quite interesting to 
notice the shift in the location of the maximum Nu 
away from 40 = 7-c/2 at small Rayleigh numbers (see 
Fig. 3) and then backwards towards & = n/2 at large 
Rayleigh numbers. This effect is probably also 
explained by the balance mechanism between the main 
flow and the recirculating flow near the outer boun- 
dary which hinders heat transfer at large values of 
c$,, and Ra. In particular, the ‘leveling-off’ effect 
mentioned earlier for NM at 40 = x becomes obvious 

on Fig. 11. 

5. CONCLUDING REMARKS 

Natural convection flow in an annular fluid layer 
has been investigated assuming adiabatic conditions 
at the inner boundary and a prescribed sinusoidal 
temperature at the outer boundary. Two-dimensional 
steady-state solutions were obtained with regular per- 
turbation and numerical methods. 

The perturbation solutions show that the first effect 
of incipient convection is to decrease the value of the 
overall Nusselt number for 4, = 0, which is verified 
numerically. This phenomenon has been described 
previously by Robillard et al. [IO] for 4, = R in porous 
flow with an isothermal inner boundary. As opposed 

to the case of the porous medium [9], there exists for 
the fluid medium a wider range of heating angles for 
which no separation will occur in the limit of small 
Rayleigh numbers. 

Just as in the porous case [9], the present study 
concludes to the existence of various flow regimes 
depending on the values of the Rayleigh number and 
the heating angle. However, unlike the porous case, 
the heat flow at the outer boundary never changed 
sign more than twice on 0 < 4 < 2n over the whole 
range of Rayleigh numbers considered (0 < Ra < 

40,000). Furthermore, it was reported in ref. [9] 
that for the porous medium the heat flow across the 
outer boundary is more and more concentrated at 
the top and bottom of the cavity as Ra is increased. 
This tendency is still present for the fluid medium, but 
it is far less pronounced. Finally, it is mentioned in 
ref. [9] that the flow rate 11/1 reached a maximum and 
then decreased with Ra for &, = rc. This is in contrast 
with the monotonous increase of $i with Ra which is 
observed for a fluid. 

It might be stated as final remark that the physical 
behavior of the fluid medium is not as easily under- 
stood as that of the porous medium. In the latter case, 
there is a simple relation between the net circulation 
around any closed path in the flow and the tem- 
perature field which has no counterpart in the case 
of a fluid. For instance in ref. [9] the existence of 
recirculating cells such as the ones shown on Fig. 8, 
4,, = ?t, may be deduced a priori from the fact that the 
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circulation on the outer boundary takes the value C 

zero. I 
= 6-5R*-R4+41nR(-3+R2+41nR) 

64(1-R-*) 
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C 
2 

= I-4lnR-R* 

16(1-R-*) 

C, = -l/8 

C,, = l/32-C*/2-Cr/2 

c = R-2+R-4 _R-4+R-6 

’ 32(1-R-*)* + q1 -R-*)4 In R 

-l-4R-2-R-4 

c6 = 32(1-R-*)* 
+ 1+3R-.‘-4R-’ 

16(1-R-*)4 
1nR 

c = 3(l+R-*) 
7 

-l+R-6 lnR 
32(1-R-*)* + 8(l-R-2)4 

C8 = -cs-c6-c7. 

The functions f;(r) in the first-order temperature function 
T,, equation (17b), are given by the following expressions: 

f,(r) = ~,,r3+a,*r-3+~,1r5+~,4r31nr 

+a,,r+a,,r-‘+a,,rlnr 

f*(r) = a,,r+cc,*r-‘+a*,r-‘lnr+a,,rlnr 

+a2,r31nr+cc*6rln2r+a*,r3+u*,rS 

f3(r) = a,,r+a,*r-‘+a,,r5+cc,,r’+a,,rlnr 

+a16rm’lnr+a),rm3+a)8rln2r. 

For the second-order stream function $*, equation (18) the 
functions g,(r) are given by 

g,(r) = Y1.1r6+Y1.*r4+Y1.3~~2+Y1.4~-4+Y1.Sr61nr 

+y~,~~8+y~,~+y,,~~41n~+y,,~~41n2~+y,,,,~2 

+p,,,,r*lnr 

s*(r) = ~*.~~4+~*,*~2+~*.3+~2.4~~2+~*.S~6+~*,~~8 

+y*,,lnr+y*,,r61nr+y*,,r41nr+y2.,, r4 ln2 r 

+y*.,,r21nr+y2.,2r21n2r 

g,(r) = y~.I~4+y~,2r2+Y3.1+y~,q~-2+~~,g~6+~j,~~8 

+y,,,lnr+y,~,r61nr+y,,,r41nr+y,,,,r41n2r 

+y,,,,r21nr+y,,,2r21n*r 

94(r) = y4,r +Y4,21nr+y,~r2+y~,~r21nr+y~.,r6 

+ys,/+y+,r6 In r+y4,,r4+y,,,r4 In r 

+y,,,0r21n2r+y,,,r41n2r. 

For the sake of brevity, the coefficients cxi, and y,,, are not 
given explicitly here, but are available from the authors upon 
request. 
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APPENDIX 

The coefficients for the first-order stream function $, 
equation (17a), are 

ETUDE DE LA CONVECTION LAMINAIRE NATURELLE DANS UNE COUCHE 
FLUIDE ANNULAIRE NON UNIFORMEMENT CHAUFFEE 

Rt%nr&--On Btudie la convection naturelle relative a une couche annulaire confinie entre deux cylindres 
horizontaux. Des rdsultats sont present&s pour le cas dune front&e interieure adiabatique avec une 
distribution de temperature sinusoIdale sur la front&e exterieure. Le probleme est formule avec l’ap- 
proximation de Boussinesq et il est rbsolu en utilisant les techniques de perturbation et de differences finies. 
On trouve que ces deux methodes sont en bon accord pour la convection faible. On constate l’existence de 
plusieurs regimes d’ecoulement qui dependent de Ra et de la position angulaire du maximum de temperature 
sur la front&e exterieure, ce qui est semblable a des resultats anterieurs pour le milieu poreux. En particulier 
quand on chauffe par le bas, il y a trois sous-regimes distincts dans le domaine de parametres considert 
(R = 2, 0 < Ra < 40 000) : l’&coulement stable a quatre cellules pour Ra < 1120, l’bcoulement recirculant 
avec ou sans cellules secondaires pour 1120 < Ra < 40 000, et finalement un ecoulement recirculant instable 
pour Ra > 40000. Des cellules secondaires commencent a apparaitre p&s de la limite exterieure a 
Ra = 11000. Pour un angle quelconque de chauffage, il y a toujours une recirculation nette autour de la 
cavite, a moins que le chauffage soit au sommet, qui conduit a une augmentation du transfert de chaleur 
avec l’environnent. Ce maximum de mouvement et de transfert est obtenu pour un angle de chauffage au- 

dessous de l’horizontale mais qui depend de Ra. 
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UNTERSUCHUNG DER LAMINAREN NATURLICHEN KONVEKTION IN EINEM 
UNGLEICHMASSIG BEHEIZTEN RINGRAUM 

Zusammenfassung-Die freie Konvektion in einem fluidgefiillten Ringraum zwischen zwei konzentrischen 
Zylindem wird untersucht. Ergebnisse werden fiir den Fall des adiabaten inneren Zylinders und einer 
sinusfijrmigen Tem~ratu~erteilung auf dem IuBeren Zylinder gezeigt. Das Problem wird mit Hilfe der 
~ussinesq-N~herung formuliert und mit Hilfe von Differen~nverfahren und Str6mun~ve~ahren gel&t. 
Beide Verfahren zeigen vor allem bei schwach ausgepragter Konvektion gute ~bereinstimmung. Die 
Losungen zeigen verschiedene Strijmungsarten auf, abhlngig von der Rayleigh-Zahl und dem Ort der 
hiichsten Temperatur auf dem LuBeren Zylinder. Sie sind frtiheren Ergebnissen mit poriiser Fiillung 
prinzipiell Bhnlich. In einem Fall zeigt sich, da13 die gerade einsetzende Konvektion die Nusselt-Zahl 
verringert. Wenn direkt von unten beheizt wird, erhalt man im Bereich der untersuchten Parameter 
(Radienverhiiftnis RJR* = 2, Rayleigh-Zahl 0 < Ra < 40000) drei verschiedene Striimungsarten: sta- 
tion&e Rechteckzellen fur Ra < 1120, Zirkulationsstr6mung mit und ohne ~kund~r~llen fiir 
1120 < Ra < ~~ und ~~ieBii~h instation~re Zirkulationsstr6mung fiir Ra > 40000. Sek~d~rzellen 
entstehen nahe der luBeren Zylinderwand ab etwa Ra = 11000. Bei allen anderen Winkelpositionen der 
hiichsten Temperatur erhalt man eine umlaufende Striimung im Ringraum, aut3er wenn direkt von oben 
geheizt wird. Dies fiihrt zu einem verstlrkten Wlrmeilbergang an die Umgebung. Die stiirkste Stromung 
und den besten Wlrmeiibergang erhllt man, wenn die Stelle maximaler Temperatur auf der unteren 

Zylinderhllfte ist, wobei die genaue Position von der Rayleigh-Zahl abhlingt. 

MCCJIE~OBAHWE JIAMMHAPHOE ECTECTBEHHOH KOHBEKHMM B KOJIbHEBOM 
CJTOE XMAKOCTH I-IPM HEPABHOMEPHOM HAFPEBE 

AFIHOTaUHw-H3yqanaCb cBo6onHar KOHBeKUW, B KO,lbUeBOM CJIOe )I(RLIXOCTB, HaXO~RlueiiCR Mexny 

LlByMR TOPH30HTElRbHblMH Wi,WHLlpZiM&i. ~peI@2TaB_WibI pe3yJIbTaTbI LlJIl ama6aTWeCKOSi BHyTpeHHefi 

rpamubz w c~~yco~~~7bHoro pac~~~e~eH~~ re.wnepa-rypbi Ha miemfeii rpatiuue CJIOII. Mcnosbsosa- 
nocb ~p~6~~~eH~e fiyccmema. Peruewe nonyreso ~e~oil~hf Bo3My~eH~~ u q~~eHHb1~ MeToIfoM 

KOHeYHblX pa3HOCTCii. 06napymerro, 'Ii-O pe3y,7bTaTbi, IIO+7y=IeHHbie 06OHMH MCTOXaMH, XOPOUIO corna- 
C)‘K?TCK A.W CJIyWK cna6o% KOHBCKURN. PeLUeHHR l7OKa3bIBalOT CylueCTBOBaHiie pa3JIWlHblX peXWMOB 
Te'IeHRR, 3BBACRIUUX OT 'IEiCJla Ra W yrZIOBOr0 IIOJIOXCHIII MaKCHMyMa TeMnepaTypbI Ha HapymHOti 

rpaenue, KOTOpbIe CXOLUIbI no xapaxrepy c llOny'leHHbIMti paHee pe3yJIbTaTaMa LL7n ITOptiCTOii CpeLulI. 

Haiineso,~TOBna~anbHbIiinepwO~BO3H~Kawuma KOHBeKUWlMO,KeTnpABO&,NTbKyMeHbWeHHIOWc_Za 

HyCCenbTa. B ‘iaCTHOCTH, I&W HarpeBe CHU3y MOryT 6bITb ROJIyYeHbl TpK OT=IeTJlRBbIX noJ$pexmMa B 
o6nacTe ~CcMaTpHBaeM~x napaMeTpoB (R = &O-c Ru<~~), a UMeHHo:CTaLWoHapHOeTeqeHHec 

'IeTbIpbhiSl RWtiKaMEi &7i? &Y < 1120, UUpKy,7~UHOHHOe TeSCHHC CO BTOPH’fHblMH SYefiXaMB H 6e3 HEX 
JIJW 1120 c Ra < ~OOOO,H xaxoHeu,HeycToirweoe IiapKynnuRoHffoe TeYeHae&?a Ra > 4OOtlO. BTopwi- 
Hble WIetiKH ,7OllBjl,UOTCR e6xi3s Hap,‘mHOti rpaHHUb1 IIpLi Ra = 11Mx). npki llpOLi3BOJIbHOM nOnOlKe- 
HHU MaImmyMa TeMnepaTypbl Bcerna cyruecTsyeT wcT0 ueplcynruronnoe Teqewe 8 nonocTW no Tex 

nop,no~a He Ha%iHaeT rperbcn eepx,qTO npueoneT K ycmeHm0 Tennoo6MeHa.i%faKceMym.I CKOPOCTH 
TCYeHHI M K03&&WieHTa Tennoo6weHa 3aBHCRT OT ‘iHCJla Ra W Ha6monamicb IIpe IIOJlO?ICeHHH MaKEPi- 

MyMa re.uneparypbi rimire ocn. 


